Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

New PhD opportunity: Template assisted III-V epitaxy enabling quantum dot lasers on silicon

We are pleased to advertise a new PhD opportunity, supervised by Dr Qiang Li (liq44@cardiff.ac.uk) and Prof Dave Wallis (wallisd1@cardiff.ac.uk).

Application deadline: 1 March 2019 Start date: 1 October 2019

In this project, we will develop quantum dot (QD) lasers directly grown on silicon at strategically important 1550 nm emission wavelength. The newly-established metal-organic vapour phase epitaxy (MOVPE) capability and the availability of molecular-beam epitaxy (MBE) provides a complementary experimental setting for this project. Various growth techniques will be investigated with the aim to improve the structural and optical properties of InAs/InP QDs. Challenges associated with integration on silicon will be addressed through development of advanced epitaxial processes including V-groove template assisted epitaxy and cavity confined epitaxy.

Background Today, data has become extremely important in all aspects of human life. Currently data in computers move across chips and from chip to chip electronically, through tiny metal wires. In the context of explosive growth in data traffic, high dissipation electrical-interconnects quickly become the bottleneck due to ohmic loss and RC delays of copper wires. Already, today’s data centres are consuming about 3 percent of the global electricity supply and this number is going to be tripled in the next decade. To address these challenges, silicon photonics is progressing rapidly to realise all-optical interconnects. The use of photon-based communication in integrated circuits allows ultralow power dissipation, low latencies, and unprecedented high bandwidth. However, the lack of an efficient light emitter due to the indirect bandgap properties of silicon continues to pose a major roadblock.

Project aims and methods The project is divided into three stages: •literature review and MOVPE training (0.5 year) •growth of InAs/InP quantum dots and optimisation of the morphology and optical properties (1 year) •develop buffer technology on silicon and enable QD laser device integration (2 years). In Stage 2 and 3, you will interact with a PDRA from Compound Semiconductor Manufacturing Hub who will fabricate devices and provide device feedback.