Publications

 

Peer reviewed journal publications

2021

  • J. Yang, Z. Liu, et al, “All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layeron Si substrates, Journal of Physics. D: Applied Physics, 54 035103, 2021 DOI: 10.1088/1361-6463/abbb49
  • J. Bruckbauer, Y. Gong, L, et al, “Evolution of the luminescence in non-polar (11-20) GaN overgrown on a progression of different GaN microstructures” Journal of  Physics D: Applied Physics, 54, 025107, 2021

2020

  • T. Zhou, M. Tang, G Xiang, et al, “Continuous-Wave Quantum Dot Photonic Crystal Lasers Grown on On-axis Si (001)”, Nature Communications 11, 977 (2020). DOI: 10.1038/s41467-020-14736-9
  • S. Skalsky, Y. Zhang, J.A Alanis, et al, “Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing” Light: Science & Applications 9, 43 (2020). DOI: 10.1038/s41377-020-0279-y
  • N. Poyiatzis, J. Bai, R. M. Smith, et al , “Optical polarization properties of (11-22) semi-polar InGaN LEDs with a wide spectral range”, Scientific Reports 10, 7191 (2020); DOI:10.1038/s41598-020-64196-w
  • S. Jiang, Y. Cai, P. Feng, et al, “Explore an approach towards the intrinsic limits of GaN electronics”, ACS Appl. Mater. Interfaces, 12, 12949−12954 (2020); DOI: 10.1021/acsami.9b19697
  • M. Athanasiou, P. Papagiorgis, A. Manoli, et al, “Efficient Light Down-Conversion via Resonant Energy Transfer in InGaN Nanohole Arrays Coated by Lead Halide Perovskite Nanocrystals”, ACS Appl. Nano Mater. 3, 2167-2175 (2020); DOI: 10.1021/acsanm.9b02154
  • J. Bai, Y. Cai, P. Feng, et al , “Ultra-small, ultra-compact and ultra-high efficient InGaN micro light emitting diodes (µLEDs) with narrow spectra linewidth”, ACS Nano 14, 6906–6911 (2020); DOI:10.1021/acsnano.0c01180
  • Y. Cai, S. Shen, C. Zhu, et al, “Monolithic non-polar (11-20) GaN metal-semiconductor-metal photo-detectors with superior performance on silicon” ACS Appl. Mater. Interfaces 12, 25031–25036 (2020) DOI:10.1021/acsami.0c04890
  • P-M Coulon, P. Feng, B. Damilano, et al, “Influence of MOVPE environment on the selective area thermal etching of GaN nanohole arrays” Scientific Reports 10, 5642 (2020); DOI:s41598-020-62539-1
  • S. Jiang, Y. Cai, P. Feng, et al, “Explore an approach towards the intrinsic limits of GaN electronics” ACS Appl. Mater. Interfaces 12, 12949−12954 (2020); DOI:10.1021/acsami.9b19697
  • J. Bai, Y. Cai, P. Feng, et al, “A direct epitaxial approach to achieving ultra-small and ultra-bright InGaN-based micro light emitting diodes (µLEDs)”, ACS Photonics 7, 411-415 (2020); DOI:acsphotonics.9b01351
  • J. Bruckbauer, C. Trager-Cowan, B. Hourahine, et al, “Luminescence behaviour of semi-polar (10-11) InGaN/GaN ‘bow-tie’ structures on patterned Si substrates”J. Appl. Phys. 127, 035705 (2020) DOI:10.1063/1.5129049
  • S. Shutts & D. Gallagher “Designing tomorrow’s VCSELs”, CS Magazine Vol. 26, issue 4, June 2020
  • J. Haggar, Y Cai, S.S Ghataora, Et al; “High Modulation Bandwidth of Semi-polar (11-22) InGaN/GaN LEDs with Long Wavelength Emission”, ACS, 2020, DOI:acsaelm.0c00399
  • X. Zhao, K. Huang, J. Bruckbauer, S. Shen, C. Zhu, P. Fletcher, F. Peng, Y. Cai, J. Bai, C. Trager-Cowan, R. W. Martin and T. Wang “Investigation of the influence of an InGaN superlattice prelayer on the performance of semi-polar (11-22) green LEDs grown on silicon (113) substrates” Scientific Reports 10, 12650 (2020) DOI:s41598-020-69609-4
  • Z. Li, C.P Allford, et al, “Monolithic InP Quantum Dot Mode-Locked Lasers Emitting at 730 nm”, IEEE Photonics Technology Letter 2(17), 1073-1076 DOI: 10.1109/LPT.2020.3012568
  • Y. Lu, et al, “Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon”, Optics Letters 45 (19), 5468-5471, 2020 DOI: 10.1364/OL.401042
  • Y. Zhang, et al, “Droplet manipulation and horizontal growth of high-quality self-catalysed GaAsP nanowires” Nano Today 34, 100921, 2020 DOI: 10.1016/j.nantod.2020.100921
  • K. Liet al, “Inversion Boundary Annihilation in GaAs Monolithically Grown on On‐Axis Silicon (001)” Advanced Optical Materials, 2000970 (2020) DOI:10.1002/adom.202000970
  • J.M Watson, C.M Liang, et al. “ Magnetic field frequency optimisation for MFL imaging using QWHE sensors”. Insight, 62(7). 2020
  • J.M Watson, C.M Liang, et al. “Development and Optimisation of Low Power Magnetic Flux Leakage Inspection Parameters for Mild Steel Welds”. Insight, Nov 2020, G421:M421
  • A. Salhi, J. Sexton, et al, “InGaAs/AlAs/GaAs metamorphic asymmetric spacer layer tunnel (mASPAT) diodes for microwaves and millimeter-waves detection” Journal of Applied Physics 127, 194505, 2020 DOI: 10.1109/UCMMT47867.2019.9008328
  • H. Zeng, X. Yu, et al,  “Determination of Preferred Growth Direction of III-V Nanowires on Differently Oriented Si Substrate”  Nanotechnology 31, 475708 (2020) DOI: 10.1088/1361-6528/abafd7
  • J. Bai, Y. Cai, et al, “Ultra-small, ultra-compact and ultra-high efficient InGaN micro light emitting diodes (µLEDs) with narrow spectra linewidth” ACS Nano 14, 6906–6911, 2020 DOI: 10.1021/acsnano.0c01180

2019

  • A. Samani, E. El-Fiky, M. Osman, et al. “Silicon Photonic Mach-Zehnder Modulator Architectures for on Chip PAM-4 Signal Generation and Transmission”. Journal of Lightwave Technology (2019). DOI:10.1109/JLT.2019.2908655
  • Q. Li, Z. Wang, Y. Zhang, et al, “ITO nanowires grown on Ni foam as voltage self-stabilizing supercapacitor electrode”, Journal of Materials Research 34, 3195-3203 (2019). DOI: 10.1557/jmr.2019.241
  • O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate. Li K, Liu Z, Tang M, Liao M, Kim D, Deng H, Sanchez AM, Beanland R, Martin M, Baron T, Chen S, Wu J, Seeds A, Liu H. J. Crystal Growth 2019. DOI: 10.1016/J.CRYSGRO.2019.01.016 
  • Overgrowth and characterisation of (11-22) semipolar GaN on (113) silicon with a two-step method. Cai Y et al. Semiconductor Science and Technology. 2019. DOI: 10.1088/1361-6641/AB08BF 
  • Monolithically integrated white light LEDs on (11-22) semi-polar GaN templates. Poyatzis N et al. Scientific Reports. 2019:9;986. DOI:10.1038/s41598-018-37575-7 
  • Thin Ge buffer layer on silicon for integration of III-V on silicon. Yang, J; Jurczak, P;  Cui, F; Li, K; Tang, M; Billiald, L; Beanland, R; Sanchez, AM; Liu, H. Journal of Crystal Growth, 2019, 514, pp 109-113. DOI: 10.1016/j.jcrysgro.2019.02.044. 
  • Degradation of III-V Quantum Dot Lasers Grown directly on Silicon substrates. Shutts, S; Allford, C.P; Spinnier, C; Li, Z; Sobiesierski, A; Tang, M; Liu, H; Smowton, P.M. IEEE Journal of Selected Topics in Quantum Electronics, 25, 6. DOI: 10.1109/JSTQE.2019.2915994 
  • Ultra-Energy-Efficient Photoelectrode Using Microstriped GaN on Si. Syed, Z.A; Hou, Y; Yu, X; Shen, S; Athanasiou, M; Bai, J; Wang, T. ACS Photonics (2019), 6, pp 1302-1306. DOI: 10.1021/acsphotonics.9b00478. 
  • Monolithic multiple colour emission from InGaN grown on patterned non-polar GaN. Gong, Y; Jiu, L; Bruckbauer, J; Bai, J; Martin, R.W; Wang, T. Scientific Reports, 9, 986. (2019) DOI: 10.1038/s41598-018-37575-7. 
  • The effect of post-growth rapid thermal annealing on InAs/InGaAsdot-in-a-well structure monolithically grown on Si. Li, W; Chen, S; Wu, A; Tang, M; Seeds, A, Liu, H; Ross, I.  Journal of Applied Physics125, 135301 (2019) DOI: 10.1063/1.5085175. 
  • Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates”, Zhou,T;  Tang,M;  Xiang, G;  Fang,X;  Liu, X;  Xiang, B;  Hark, S;  Martin, M; Touraton, M-L;  Baron, T; Lu, Y; Chen, S; Liu,H;  Zhang, Z. Optica 6, 430 (2019). DOI: 10.1364/OPTICA.6.000430. 
  • 3D ITO-nanowire networks as transparent electrode for all-terrain substrate. Li, Q;  Tian, Z;  Zhang, Y; Wang, Z;  Li, Y; Ding, W; Wang, T; Yun, F. Scientific Reports 9, 4983 (2019). DOI: 0.1038/s41598-019-41579-2. 
  • P. Yu, Z. Li, T. Wu, et al, “Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission”, ACS Nano 2019 13 (11), 13492-13500, DOI: 10.1021/acsnano.9b07204
  • S. Pan, V. Cao, M. Liao, et al, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate”, Journal of Semiconductors (2019) 40, 101302 DOI: 10.1088/1674-4926/40/10/101302
  • S. Shen, X. Zhao, X. Yu, et al, “Semi-polar InGaN-based green light-emitting diodes grown on silicon“, Phys. Stat. Sol. (A) 1900654 (2019); DOI: 10.1002/pssa.201900654
  • C. Trager-Cowan,  Y. Zhang, L. Jiu, et al, “Scanning electron microscope as a flexible tool for investigating the properties of UV-emitting nitride semiconductor thin films”, Photonics Research 7, B73 (2019) DOI: 10.1364/PRJ.7.000B73
  • J. Bai, L. Jiu, P. Fletcher, Y Gong, T Wang, “Optical and polarisation properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates”, Scientific Reports 9, 9770 (2019) DOI: 10.1038/s41598-019-46343-0
  • G. Naresh-Kumar, J. Bruckbauer, A. Winkelmann, X. Yu, B. Hourahine, P.R. Edwards, T. Wang, C. Trager-Cowan and R. W. Martin, “Determining GaN nanowire polarity and its influence on light emission in the scanning electron microscope”, Nano Lett. 19, 3863(2019) DOI: 10.1021/acs.nanolett.9b01054
  • J. M. Watson, C.W. Liang, J. Sexton, F. Biruu and M. Missous, “Surface-breaking flaw detection in mild steel welds using quan-tum well hall effect sensor devices”. AIP Conference Proceedings 2102, 080010, 2019. DOI:  10.1063/1.5099818
  • A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A.Alyamani. “Achieving wavelength emission beyond the C-band from Type-II InAs-GaAsSb quantum dots grown monolithically on silicon substrate”. Journal of Alloys and Compounds 771, Pages 382-386, 2019. DOI: 10.1016/j.jallcom.2018.08.276
  • A. Salhi, S. Alshaibani, Y. Alaskar, H. Albrithen, A. Albadri, A. Alyamani, M. Missous, “Altering the Optical Properties of GaAsSb-Capped InAs Quantum Dots by Means of InAlAs Interlayers”. Nanoscale Research Letters, 14:41, 2019. DOI 10.1186/s11671-019-2877-2
  • O. S. Abdulwahid, I. Kostakis, S. G. Muttlak, J. Sexton, K. Ian, M. Missous, “Physical modelling of InGaAs–InAlAs APD and PIN photodetectors for> 25 Gb/s data rate applications”. IET Optoelectronics 13 (1), 40-45, 2019. DOI 10.1049/iet-opt.2018.5030
  • Integration of III-V lasers on Si for Si photonics. Tang, M; Park, J-S, Wang, Z; Chen, S; Jurczak, P; Seeds, A; Liu, H.  Progress in Quantum Electronics, 66, (2019), pp 1-18. DOI: 10.1016/j.pquantelec.2019.05.002.  
  • Monolithic multiple colour emission from InGaN grown on patterned non-polar GaN. Y. Gong, Y;  Jiu, L; Bruckbauer, J;  Bai, J; Martin,  R. W;  Wang, T. Scientific Reports, 9, 986 (2019). DOI: 10.1038/s41598-018-37575-7.  
  • Demonstration of Si based InAs/GaSb type-II superlattice p-i-n photodetector. Deng, Z; Guo, D; Burguete, C.G; Xie. Z; Huang, J; Lui, H; Wu, J; Chen, B. Infrared Physics & Technology, 101, (2019), pp 133-137. DOI: 10.1016/j.infrared.2019.06.011.  
  • Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. Liu, Z; Hantschmann, C; Tang, M; Lu, Y; Park, J-S; Liao, M; Pan, S; Sanchez, A.M; Beanland, R; Martin, M; Baron, T; Chen, S; Seeds, A.J; White, I; Pleanty, R; Liu, H. Journal of Lightwave Technology, June 2019, P 1-1.  DOI 10.1109/JLT.2019.2925598.  
  • Selective area intermixing of III–V quantum-dot lasers grown on silicon with two wavelength lasing emissions. Liao, M; Li, W; Tang, M; Li, A; Chen, S; Seeds, A; Liu, H. Semiconductor Science and Technology, 34, 8, (2019). DOI: 10.1088/1361-6641/ab2c24.  
  • Confocal photoluminescence investigation to identify basal stacking fault’s role in the optical properties of semi-polar InGaN/GaN lighting emitting diodes. Zhang, Y; Smith, R.M; Jiu, L; Yu, X; Bai, J; Wang, T. Scientific Reports 9, 9735 (2019). DOI: 10.1038/s41598-019-46292-8.  
  • Optical and polarisation properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates. Bai, J; Jiu, L; Fletcher, P; Gong Y; Wang, T. Scientific Reports 9, 9770 (2019). DOI: 10.1038/s41598-019-46343-0.  
  • Determining GaN nanowire polarity and its influence on light emission in the scanning electron microscope. Naresh-Kumar, G; Bruckbauer, J;  Winkelmann, A;  Yu, X;  Hourahine, B; Edwards, P.R;  Wang, T; Trager-Cowan, C; Martin, R. W. Nano Lett. 19, 3863(2019). DOI: 10.1021/acs.nanolett.9b01054.  
  • Surface-breaking flaw detection in mild steel welds using quantum well hall effect sensor devices. Watson, J. M; Liang, C.W; Sexton, J; Biruu F; Missous, M. AIP Conference Proceedings 2102, 080010, 2019. DOI:  10.1063/1.5099818.  
  • Achieving wavelength emission beyond the C-band from Type-II InAs-GaAsSb quantum dots grown monolithically on silicon substrate. Salhi, A; Alshaibani, S; Alaskar, Y; Albadri, A; Alyamani, A. Journal of Alloys and Compounds, 771, pp 382-386, 2019. DOI: 10.1016/j.jallcom.2018.08.276.  
  • Altering the Optical Properties of GaAsSb-Capped InAs Quantum Dots by Means of InAlAs Interlayers. Salhi, A; Alshaibani, S; Alaskar, Y; Albrithen, H; Albadri, A; Alyamani, A; Missous, M. Nanoscale Research Letters, 14:41, 2019. DOI: 10.1186/s11671-019-2877-2.  
  • Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates. Shutts S, Allford C, Spinnier C, et al. IEEE Journal of Selected Topics in Quantum Electronics. 2019:25(6). DOI 10.1109/JSTQE.2019.2915994
  • The effect of post-growth rapid thermal annealing on InAs/InGaAsdot-in-a-well structure monolithically grown on Si. Li W, Chen S, Wu J, et alJournal of Applied Physics. 2019:125, 135301. DOI 10.1063/1.5085175
  • Integration of III-V lasers on Si for Si photonics. Tang M, Park J-S, Wang Z, et al. Progress in Quantum Electronics. 2019:66, pp 1-18. DOI 10.1016/j.pquantelec.2019.05.002
  • Demonstration of Si based InAs/GaSb type-II superlattice p-i-n photodetector. Deng Z, Guo D, Gonzalez Burguete C, et al. Infrared Physics and Technology. 2019:101 pp 133-137
  • Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. Liu Z, Hantschmann C, Tang M, et al. Journal of Lightwave Technology. 2019  DOI 10.1109/JLT.2019.2925598
  • Selective area intermixing of III–V quantum-dot lasers grown on silicon with two wavelength lasing emissions. Liao M,  Li W,  Tang M, et al. Semiconductor Science and Technology. 2019:34 (8). DOI 10.1088/1361-6641/ab2c24.
  • Confocal photoluminescence investigation to identify basal stacking fault’s role in the optical properties of semi-polar InGaN/GaN lighting emitting diodes. Zhang Y, Smith R.M, Jiu L, et al. Scientific Reports. 2019:9, 9735. DOI 10.1038/s41598-019-46292-8
  • Optical and polarisation properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates. Bai J, Jiu J, Poyiatzis N, et al. Scientific Reports. 2019:9, 9770. DOI 10.1038/s41598-019-46343-0
  • Determining GaN nanowire polarity and its influence on light emission in the scanning electron microscope. Naresh-Kumar G,  Bruckbauer J, Winkelmann A, et al. Nano Letters. 2019:19 (6), pp 3863-3870. DOI 10.1021/acs.nanolett.9b01054
  • Surface-breaking flaw detection in mild steel welds using quantum well hall effect sensor devices. Liang C-W, Sexton J, Biruu F.A and Missous M. AIP Conference Proceedings. 2019:2 (1). DOI 10.1063/1.5099818
  • Achieving wavelength emission beyond the C-band from Type-II InAs-GaAsSb quantum dots grown monolithically on silicon substrate. Salhi A, Alshaibani S, Alaskar Y, et al. Journal of Alloys and Compounds. 2019:771, pp 382-386.
  • Altering the Optical Properties of GaAsSb-Capped InAs Quantum Dots by Means of InAlAs Interlayers. Salhi A, Alshaibani S, Alaskar Y, et al. Nanoscale Research Letters. 2019:14, 41. DOI 10.1186/s11671-019-2877-2
  • Physical modelling of InGaAs–InAlAs APD and PIN photodetectors for> 25 Gb/s data rate applications. Abdulwahid O.S, Kostakis I,  Muttlak S.G, et al. IET Optoelectrics. 2019:13(1), pp 40-45. DOI 10.1049/iet-opt.2018.5030
  • Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission. Yu P, Li Z, Wu T, et al.  ACS Nano. 2019:12(11), pp 13492 – 13500. DOI 10.1021/acsnano.9b07204
  • Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. Pan S, Cao V, Liao M, et al. Journal of Semiconductors. 2019:40, 101302. DOI 10.1088/1674-4926/40/10/101302
  • Semi-polar InGaN-based green light-emitting diodes grown on silicon. Shen S, Zhao X, Yu X, et al. Physica Status Solidi A. 2019: DOI 10.1002/pssa.201900654
  • Scanning electron microscope as a flexible tool for investigating the properties of UV-emitting nitride semiconductor thin films. C Trager-Cowan C,  Alasmari A, AvisW, et al. Phonics Research. 2019:7(11), pp B73 – B82. DOI 10.1364/PRJ.7.000B73
  • Semi-polar InGaN/GaN multiple quantum well solar cells with spectral response at up to 560 nm.  Bai J, Gong Y.P, Zhang Y and Wang T. Solar Energy Materials and Solar Cells. 2018:175, pp 47–51. DOI 10.1016/j.solmat.2017.10.005
  • Indium tin oxide nanowires grown on Ni foam as voltage self-stabilizing supercapacitor electrode. Li Q, Wang Z, Zhang Y, et al.  Journal of Materials Research. 2019:34(18), pp 3195-3203. DOI 10.1557/jmr.2019.241
  • Integration of III-V lasers on Si for Si photonics.  Tang M, Park J-S, Wang Z, et al. Progress in Quantum Physics, DOI 10.1016/j.pquantelec.2019.05.002

2018

  • N. Abadía, Md. G. Saber, F. Bello, et al. “CMOS Compatible Multi-band Plasmonic TE-pass Polarizer”. Optics Express (2018). DOI:10.1364/OE.26.030292
  • Y. Wang, L. Xu, H. Yun, et al. “Polarization-Independent Mode-Evolution-Based Coupler for the Silicon-on-Insulator Platform”. Photonics Journal (2018). DOI:10.1109/JPHOT.2018.283576
  • Increasing maximum gain in InAs quantum dot lasers on GaAs and Si. Shutts S, Spinnler C, Li Z, Jarvis L, Le Boulbar E, Hayes D, Tang M, Liu H, Smowton PM. DOI: 10.1109/IPCon.2018.8527302 
  • Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon.  Liao M, Chen S, Liu Z, Wang Y, Ponnampalam L, Zhou Z, Wu J, Tang M, Shutts S, Liu Z, Smowton PM, Yu S, Seeds A, and Liu H. Photonics Research 6, 1062-1066 (2018). DOI: 10.1364/PRJ.6.001062 
  • Monolithic quantum-dot distributed feedback laser array on silicon. Wang Y, Chen S, Yu Y, Zhou L, Liu L, Yang C, Liao M, Tang M, Liu Z, Wu J, Li W, Ross I, Seeds AJ, Liu H, Yu S. Optica 5, 528-533 (2018) 
  • Controllable Uniform Green Light Emitters Enabled by Circular HEMT-LED Devices. Cai Y, Gong Y, Bai J, Yu X, Zhu C, Esendag V, Lee KB, Wang T. IEEE Photonics Journal. Volume 10, Number 05, September 2018 
  • Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers. Cai Y, Zhu C, Jiu L, Yu X, Bai J, Esendag V, Wang T. 2018, 11(10),1968. DOI:10.3390/MA11101968 
  • Non-polar (11-20) GaN grown on sapphire with double overgrowth on micro-rod/stripe templates. Bai J et al. Semiconductor Science and Technology. 2018: 33; 12. DOI:10.1088/1361-6641/AAED93 
  • Non-polar (11-20) GaN grown on sapphire with double overgrowth on micro-rod/stripe templates. Bai, J; Jiu, L; Gong, Y; Wang, T. Semiconductor Science and Technology, 33, 12, 25023 (2018). DOI: 10.1088/1361-6641/aaed93. 
  • Low-cost InP–InGaAs PIN–HBT-based OEIC for up to 20 Gb/s optical communication systems. Muttlak, S G.; Kostakis, I; Abdulwahid, O S; Sexton, J; Missous M. ET Optoelectronics, 13, 3, pp 144 – 150. DOI:10.1049/iet-opt.2018.5032. 
  • Flexibility of Ga-containing Type-II superlattice for long-wavelength infrared detection. Delmas, M; Kwan, D.C.M; Debnath, M.C; Liang, B.L; Huffaker, D.L. Journal of Physics D: Applied Physics, 52, 47.  DOI: 10.1088/1361-6463/ab3b6a.   
  • Overgrowth and strain investigation of (11-20) non-polar GaN on patterned templates on sapphire. Jiu, L; Gong, Y; Wang, T. Scientific Reports 8, 9898 (2018). DOI: 10.1038/s41598-018-28328-7.  
  • Investigation of growth parameters influence on self-catalyzed ITO nanowires by high RF-power sputtering. Li, Q; Zhang, Y; Feng, L; Wang, Z; Wang, F; Yun, F. Nanotechnology 29, 165708 (2018). DOI: 10.1088/1361-6528/aaafa7  
  • Heavily tin-doped indium oxide nano-pyramids as high-performance gas sensor. Li, Q; Zhang, Y; Feng, L; Wang, Z; Wang, F; Yun, F. AIP Advances 8, 115316 (2018). DOI: 10.1063/1.5048622.  
  • Controllable Green Light Emitters Enabled by the HEMT-LED Devices. Cai, Y; Gong, Y; Bai, J; Yu, X; Zhu, C;   Esendag, V; Lee, K. B.; Wang, T. IEEE Photonics Journal 10, 4900607 (2018). DOI:  10.1109/JPHOT.2018.2867821.  
  • Imaging basal plane stacking faults and dislocations in (11-22) GaN using electron channelling contrast imaging. Naresh-Kumar, G; Thomson, D; Zhang, Y;  Bai, J; Jiu, L; Yu, X;  Gong, Y. P;  Smith, R;  Wang, T; Trager-Cowan, C. Journal of Applied  Physics,  124, 065301 (2018). DOI: 10.1063/1.5042515.  
  • Cathodoluminescence studies of chevron features in semi-polar (112-2) InGaN/GaN multiple quantum well structures. Brasser, C;  Bruckbauer, J;  Gong, Y. P; Jiu, L;  Bai, Y; Warzecha, M;  Edwards, P; Wang, T; Martin, R. Journal of Applied  Physics. 123, 174502 (2018). DOI: 10.1063/1.5021883.  
  • Optimization of 1.3 μm InAs/GaAs quantum dot lasers epitaxially grown on silicon: taking the optical loss of metamorphic epilayers into account. Wang,Y;  Bai, Y;  Liu, H; Cheng, Z; Tang, T;  Chen, S;  Wu, J;  Papatryfonos, P; Liu, Z; Huang,Y;  Ren, X. Semiconductor Science and Technology. 33, 123002 (2018). DOI: 10.1088/1555-6611/aae194.  
  • Growth mechanisms for InAs/GaAs QDs with and without Bi surfactants. Chen, X.Y ; Gu,Y;  Ma, Y.J;  Chen, S.M;  Tang, M.C;  Zhang, Y.Y,  Yu, X.Z; Wang, P;  Zhang, J;  Wu, J; Liu, H.Y;  Zhang, Y.G. Materials Research Express 6 (1), 015046 (2018). DOI: 10.1088/1555-6611/aae194.  
  • Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers. Salhi, A; Alshaibani, S; Alaskar, Y; Albadri, A; Alyamani, A; Missous, M. Applied Physics Letters 113, 103101, 2018. DOI 10.1063/1.5048475.  
  • Strain-engineering of GaInAsSb Overgrown Layers and its Effects on the Optical Properties of InAs/GaAs quantum dots. Salhi, A; Alshaibani, S; Alaskar, Y; Albadri, A; Alyamani, A. Optical materials, 79, pp 200-205, (2018). DOI: 10.1016/j.optmat.2018.03.045. 
  • InGaAs/AlAs Resonant Tunneling Diodes for THz Applications: An Experimental Investigation. Muttlak, S.G;  Abdulwahid, O. S;  Sexton, J;  Kelly M.J; Missous M. IEEE Journal of the Electron Devices Society, 6, pp 254-262, 2018. DOI: 10.1109/JEDS.2018.2797951.  

2017

Comments are closed.