Publications

 

Peer reviewed journal publications

2023

  • Cai Y, Bai J,Wang T, et al. “Micro-LED and QD devices Review of a direct epitaxial approach to achieving micro-LEDs”. Phys. B 32, 018503 (2023). DOI: 10.1088/1674-1056/ac90b5
  • Hentschel C, Allford C.P, Gillgrass S-J, et al “Gain measurements on VCSEL material using segmented contact technique”. J. Phys. D: Appl. Phys. 56 074003. DOI: 10.1088/1361-6463/acaf0b
  • Gillgrass S-J, Allford C.P, Peach T, et al. “Impact of thermal oxidation uniformity on 150 mm GaAs- and Ge-substrate VCSELs” Phys. D: Appl. Phys. 56 154002. DOI:10.1088/1361-6463/acc040
  • Dang M ,Deng H, Huo S, et al. “The growth of low-threading-dislocation-density GaAs buffer layers on Si substrates”. J. Phys. D: Appl. Phys. 2023, 56 405108. DOI 10.1088/1361-6463/ace36d
  • Hou Q, H. A Fonseka H. A, Martelli F, et al. “Different Doping Behaviors of Silicon in Zinc Blende and Wurtzite GaAs Nanowires: Implications for Crystal-Phase Device Design, ACS Appl. Nano Mater. 2023, 6, 13, 11465–11471. DOI: 10.1021/acsanm.3c01493
  • Albeladi F, Gillgrass S-J, Nabialek J, et al. “Design and characterisation of multi-mode interference reflector lasers for integrated photonics” J. Phys. D: Appl. Phys. 56 384001. DOI: 10.1088/1361-6463/acdb80
  • Cao V, Pan S, Fan Y, et al. “Distortion-free amplification of 100 GHz mode-locked optical frequency comb using quantum dot technology”, Optics Express 31 (11), 18147-18158 (2023).  DOI: 10.1364/OE.486707
  • Hentschel C, Allford C.P, Gillgrass S-J, et al. “Gain measurements on VCSEL material using segmented contact technique” 2023 J. Phys. D: Appl. Phys. 56 074003. DOI: 10.1088/1361-6463/acaf0b
  • Albeladi F, Gillgrass S-J, Nabialek J et al., “Realisation of Multi-Mode Reflector Lasers for Integrated Photonics,” 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2023, pp. 1-1, DOI: 10.1109/CLEO/Europe-EQEC57999.2023.10231858.

2022

  • Jarvis L, Maglio B; Allford C.P, et al. “1.3-μm InAs Quantum Dot Lasers with P-type modulation and direct N-type co-doping”. 28th International Semiconductor Laser Conference (ISLC), Matsue, Japan, 2022, pp. 1-2, DOI: 10.23919/ISLC52947.2022.9943351.
  • Feng P,  Xu C, Bai J, et al. “A simple approach to achieving ultrasmall III-nitride µLEDs with red emission.” CS Appl. Electron. Mater. 2022, 4, 6, 2787–2792. DOI: 10.1021/acsaelm.2c00311
  • Martinez de Arriba G, Feng P, Xu C, et al.  “A simple approach to mitigate the emission wavelength instability of III-nitride μLED arrays”. ACS Photonics 2022, 9, 6, 2073–2078 2022; DOI: 10.1021/acsphotonics.2c00221
  • Hou Y, Jia H, Tang M, et al. “A thermally erasable silicon oxide layer for molecular beam epitaxy”. Journal of Physics D: Applied Physics 55 (42), 424004 (2022). DOI: 10.1088/1361-6463/ac8600
  • Cao Z, Al Sayyadi M, Salmond B, et al. “C- and L-band InAs/InP quantum dot lasers. 2022 IEEE Photonics” Conference (IPC), Vancouver, BC, Canada, 2022, pp. 1-2, DOI: 10.1109/IPC53466.2022.9975684.
  • Maglio B; Jarvis L, Allford C.P, et al. “Co-doped 1.3µm InAs Quantum Dot Lasers with high gain and low threshold current”. 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 2022, pp. 1-2, DOI: 10.1109/IPC53466.2022.9975769.
  • Baker J, Allford C.P, Gillgrass S-J, et al. “Comparative Study of 940 nm VCSELs Grown on Ge and GaAs Substrates”. 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 2022, pp. 1-2, DOI:1117/12.2583207
  • Muttlak S.G, Sabaawi A.M.A, Missous M. “Design and optimization of 0.18 µm CMOS transimpedance amplifier for 20 Gb/s optical communications using genetic algorithms”. Journal of Engineering Science and Technology Vol. 17, No. 3 (2022) 2157 – 2175. DOI: 10.3390/ma15176043
  • Tang R, Li G, Jiang Y, et al. “Ga2O3/GaN Hetero-structural Ultraviolet Photodetectors: Tunable Multi-band Detectivity via Bias Voltage and Exciton-dominated Ultra-narrow Response”. ACS Appl. Electron. Mater. 2022, 4, 1, 188–196. DOI:10.1021/acsaelm.1c00917
  • Huang Y, Zhou T, Tang M, et al. “Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates”. Chinese Optics Letters 20(4), 041401 (2022). DOI: 3788/COL202220.041401
  • Baker J, Gillgrass S-J, Peach T, et al. “Impact of strain-induced bow on the performance of VCSELs on 150mm GaAs-and Ge-substrate wafers”. Proceedings Volume PC12141, Semiconductor Lasers and Laser Dynamics X; PC1214108 (2022). DOI: 10.1117/12.2624492
  • Esendag V, Feng P, Zhu C, et al. “Influence of a two-dimensional growth mode on electrical properties of the GaN buffer in an AlGaN/GaN high electron mobility transistor”. Materials 15, 6043 (2022). DOI: 3390/ma15176043
  • Chen L, Adeyemo S O, H, Fonseka A, et al. “Long-Term Stability and Optoelectronic Performance Enhancement of InAsP Nanowires with an Ultrathin InP Passivation Layer.” Nano Lett. 2022, 22, 8, 3433–3439, 2022. DOI:10.1021/acs.nanolett.2c00805
  • Muttlak S G, Sadeghi M, Missous M, et al. “Low-Cost Compact Integrated Rectenna for Implantable Medical Receivers.” IEEE Sensors Journal, 22,17, 16938 – 16944 (2022). DOI: 1109/JSEN.2022.3192976
  • Mahoney J, Tang M, Liu H, et al. “Measurement of the quantum-confined Stark effect in InAs/In (Ga) As quantum dots with p-doped quantum dot barriers”. Optics Express, 30(11), 17730 (2022). DOI: 10.1364/OE.455491
  • Pan S,  Zhang H, Liu Z et al. “Multi-wavelength 128 Gbit s−1 λ−1 PAM4 optical transmission enabled by a 100 GHz quantum dot mode-locked optical frequency comb”.  Journal of Physics D: Applied Physics, 55 (2022) 144001. DOI 10.1088/1361-6463/ac4365
  • Tian Y, Feng P, Zhu C, et al. “Nearly Lattice-matched GaN Distributed Bragg Reflectors with Enhanced Performance”. Materials 15, 3536 (2022). DOI: 10.3390/ma15103536.
  • Fletcher P, Martínez de Arriba G,  Tian Y, Et al.  “Optical characterisation of InGaN-based microdisk arrays with nanoporous GaN/GaN DBRs”. J. Phys. D: Appl. Phys. 55, 464001 (2022). DOI: 10.1088/1361-6463/ac8fa0
  • Atalar F, Dokur E, Balaban E, et al. “Partial Discharge Detection in Pressboards Immersed in Mineral Insulation Oil With Quantum Well Hall Effect Magnetic Field Sensors”. EEE Access, vol. 10, pp. 70362-70369, 2022, DOI: 10.1109/ACCESS.2022.3187820.
  • Alharbi R, Allford C.P, Li Z, et al. “Performance Mapping of InP QDs Passively Monolithic ModeLocked Lasers”. 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 2022, pp. 1-2, DOI: 10.1109/IPC53466.2022.9975741.
  • Cao V, Park J-S, Tang M, et al. “Recent Progress of Quantum Dot Lasers Monolithically Integrated on Si Platform”. Frontiers in Physics 10 , Article 839953 (2022). DOI: 3389/fphy.2022.839953
  • Li Q, Wang M, Bai Y, et al.” Two-Inch Wafer-Scale Exfoliation of Hexagonal Boron Nitride Films Fabricated by RF-Sputtering”. Adv. Funct. Mater. 2206094 (2022) DOI: 10.1002/adfm.202206094
  • Haggar J, Ghataora S,  Trinito V, et al. “Using Time-Resolved Electroluminescence as an Alternative Method of Characterizing LEDs for Visible Light Communications”. CS Photonics 2022, 9, 7, 2378–2384, 2022. DOI: 1021/acsphotonics.2c00414
  • Baker, Gillgrass S.-J Allford C.P, et al. “VCSEL Quick Fabrication for Assessment of Large Diameter Epitaxial Wafers”. IEEE Photonics Journal, vol. 14, no. 3, pp. 1-10, Art no. 1530110, DOI: 10.1109/JPHOT.2022.3169032.
  • Zhu C, Xu C, Feng P, et al. “A comparison study of InGaN/GaN multiple quantum wells grown on (111) silicon and (0001) sapphire substrates under identical conditions”. J. Phys. D: Appl. Phys. 55 444003. DOI: 10.1088/1361-6463/ac8da4
  • Hou Y, Jia H, Tang M, et al. “A thermally erasable silicon oxide layer for molecular beam epitaxy”. J. Phys. D: Appl. Phys. 55 424004. DOI: 10.1088/1361-6463/ac8600
  • Zhu C, Xu C, Feng P, et al. “Comparison study of InGaN/GaN multiple quantum wells grown on (111) silicon and (0001) sapphire substrates under identical conditions”. J. Phys. D: Appl. Phys. 55 444003. DOI: 10.1088/1361-6463/ac8da4
  • Huang Y, Zhou T, Tang M, et al. “Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates”. Chinese Optics Letters 20 (4), 041401. DOI: 3788/COL202220.041401.
  • Huang Y, Zhou T, Tang M et al. “Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates”. Chin. Opt. Lett. 20, 041401- (2022). DOI: 10.3788/COL202220.041401
  • Jarvis L, Maglio B, Allford, CP, et al. “InAs Quantum Dot Lasers with P-type modulation and direct N-type co-doping”. Conference Digest – IEEE International Semiconductor Laser Conference. IEEE: Matsue, Japan. DOI: 10.23919/ISLC52947.2022.9943351
  • Fletcher P Martinez de Arriba G, Tian Y, et al. J. “Optical characterisation of InGaN-based microdisk arrays with nanoporous GaN/GaN DBRs’. Phys. D: Appl. Phys. 55 464001. DOI: 10.1088/1361-6463/ac8fa0
  • Deng H,  Jarvis L, Li Z, Liu et al. “The role of different types of dopants in 1.3 μm InAs/GaAs quantum-dot lasers”. Phys. D: Appl. Phys. 55 215105 DOI: 10.1088/1361-6463/ac55c4
  • Liu J, Tang M, Deng H, et al.” Theoretical analysis and modelling of degradation for III–V lasers on Si”. J. Phys. D: Appl. Phys. 55 404006. DOI: 10.1088/1361-6463/ac83d3
  • Varghese A, EblablaA, Wu Z,et al. “GaN-HEMT on Si as a Robust Visible-Blind UV Detector With High Responsivity,” in IEEE Sensors Journal, vol. 22, no. 12, pp. 12307-12313, 15 June15, 2022, DOI: 10.1109/JSEN.2022.3170653.

2021

  • Pugh JR, Harbord EGH, Sarua A, et al. “A Tamm Plasmon-Porous GaN Distributed Bragg Reflector Cavity”. Journal of Optics 23 (2021). DOI:10.1088/2040-8986/abdccb
  • Yang J, Liu Z, Jurczak, et al. “All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layeron Si substrates”. Journal of Physics. D: Applied Physics, 54 035103, 2021 DOI: 10.1088/1361-6463/abbb49
  • Papatrtfonos K, Selciah DR, Maman A, et al. “Co-Package Technology Platform for Low-Power and Low-Cost Data Centers”. NUSOD 2021 21-22 (2021). DOI:10.3390/app11136098
  • Zhang Y, Velichko AV, Fonseka HA, et al. “Defect-Free Axially Stacked GaAs/GaAsP Nanowire Quantum Dots with Strong Carrier Confinement”. Nano Lett. 21, 13, 5722–5729 (2021). DOI:10.1021/acs.nanolett.1c01461
  • Bruckbauer J, Gong Y, Jiu Ling, et al. “Evolution of the luminescence in non-polar (11-20) GaN overgrown on a progression of different GaN microstructures.” Journal of Physics D: Applied Physics, 54, 025107, 2021. DOI:1088/1361-6463/abbc37
  • Esendag V, Bai J, Fletcher P, et al. “Investigation of electrical properties of InGaN based micro light emitting diode (μLED) arrays achieved by direct epitaxy.” Phys. Stat. Sol. A 2100474 (2021). DOI:10.1002/pssa.202100474
  • Wang X, Wang T, Yu D, et al. “Large negative thermal quenching of yellow luminescence in non-polar InGaN/GaN quantum wells”. Journal of Applied Physics 130, 205704 (2021). DOI: 1063/5.0064466
  • Hagger J, Cai Y, Bai J, et al. “Long Wavelength Semipolar (11-22) InGaN\/GaN LEDs with Multi-Gb\/s Data Transmission Rates For VLC”. ACS Appl. Electron. Mater. 3, 4236-4242 (2021). DOI:10.1021/acsaelm.1c00677
  • Cai Y, Zhu C, Zhong W et al. “Monolithically integrated μLEDs/HEMTs microdisplay on a single chip by a direct epitaxial approach”. Advanced Materials Technology, 2021; 6,6 DOI:10.1002/admt.202100214
  • Fonseka HA, Zhang Y, Gott JA, et al. “Multiple radial phosphorus segregations in GaAsP core-shell nanowires”. Nano Research 14 (1), 157-164 (2021). DOI: 10.1007/s12274-020-3060-x
  • Alqurashi A and Missous M. “Physical Modeling of Asymmetric Spacers Resonant Tunneling Diodes (RTDs)”.. 2021 IEEE Latin America Electron Devices Conference (LAEDC). DOI: 10.1109/LAEDC51812.2021.9437970
  • Rybchenko SI, Ali S, Zhang Y, et al. “Polarization properties of Raman scattering by surface phonon polaritons in GaAsP nanowires”. Journal of Physics D: Applied Physics, 54, 47, 475109 (2021). DOI:10.1088/1361-6463/ac2400
  • Baker J, Allford, CP, Gillgrass S-J, et al. ‘Quick Fabrication VCSELs for Characterisation of Epitaxial Material.” Applied Sciences. 2021; 11(20):9369. DOI: 10.3390/app11209369
  • Afshari H, Durant BK, Thrasher T, et al. “Radiation tolerance of GaAs1-xSbx solar cells”. Solar Energy Materials and Solar Cells, 223, 111352 (2021). DOI:10.1016/j.solmat.2021.111352
  • Zhou T, Tang M, Li H et al. “Single-Mode Photonic Crystal Nanobeam Lasers Monolithically Grown on Si for Dense Integration.” IEEE Journal of Selective Topics in Quantum Electronics, 28 (2021) 3133546. DOI: 1109/JSTQE.2021.3133546
  • Baker J, Allford C.P, Gillgrass S.-J, et al. “VCSELs for Characterisation of Epitaxial Material”. Quick Fabrication Appl. Sci. 2021, 11, 9369. DOI:10.3390/app11209369
  • Salhi A, Hadfield A, Muttlak SG, J, et al. “Design and analysis of GaAs/AlAs asymmetric spacer layer tunnel diodes for high-frequency detection”. Physica E: Low-dimensional Systems and Nanostructures 130, 114723. DOI:10.1016/j.physe.2021.114723
  • Murshudov R, Watson JM, Liang CW, et al. “Optimising sensor pitch for magnetic flux leakage imaging systems”. Insight-Non-Destructive Testing and Condition Monitoring 63 (7), 416-421. DOI: 10.1784/insi.2021.63.7.416
  • Sun X, Rickard WDA, Ironside CN, et al. “Targeted defect analysis in VCSEL oxide windows using 3D slice and view”. Semiconductor Science and Technology 36 (6), 065015. DOI:10.1088/1361- 6641/abfa2f
  • Varghese A, Eblabla A and Elgaid K, “Modeling and Simulation of Ultrahigh Sensitive AlGaN/AlN/GaN HEMT-Based Hydrogen Gas Detector With Low Detection Limit,” in IEEE Sensors Journal, vol. 21, no. 13, pp. 15361-15368, 1 July1, 2021, DOI: 10.1109/JSEN.2021.3072476.

2020

  • Bai, Y. Cai, P. Feng, et al. “A direct epitaxial approach to achieving ultra-small and ultra-bright InGaN-based micro light emitting diodes (μLEDs)”. ACS Photonics 7, 411-415 (2020); DOI: acsphotonics.9b01351
  • Zhou T, Tang M, Xiang G, et al. “Continuous-Wave Quantum Dot Photonic Crystal Lasers Grown on On-axis Si (001)”. Nature Communications 11, 977 (2020). DOI: 10.1038/s41467-020-14736-9
  • Designing tomorrow’s VCSELs. Shutts S and Gallagher D. CS Magazine Vol. 26, issue 4, June 2020
  • Zeng H, Yu X, Fonseka H A, et al. “Determination of Preferred Growth Direction of III-V Nanowires on Differently Oriented Si Substrate”. Nanotechnology 31, 475708 (2020) DOI: 10.1088/1361-6528/abafd7
  • Watson J.M, Liang C.M, et al. “Development and Optimisation of Low Power Magnetic Flux Leakage Inspection Parameters for Mild Steel Welds”. Insight, Nov 2020, DOI:1784/insi.2021.63.2.75
  • Zhang Y, Sanchex A.M, Aagesen M, et al. “Droplet manipulation and horizontal growth of high-quality self-catalysed GaAsP nanowires”. Nano Today 34, 100921, 2020 DOI: 10.1016/j.nantod.2020.100921
  • Athanasiou M, Papagiorgis P, Manoli A, et al. “Efficient Light Down-Conversion via Resonant Energy Transfer in InGaN Nanohole Arrays Coated by Lead Halide Perovskite Nanocrystals”. ACS Applied Nano Mater. 3, 2167-2175 (2020); DOI: 10.1021/acsanm.9b02154
  • Lu Y, Cao V, Liao M, et al. “Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon”. Optics Letters 45 (19), 5468-5471, 2020. DOI: 10.1364/OL.401042
  • Jiang S, Cai Y, Feng P, et al. “Explore an approach towards the intrinsic limits of GaN electronics”. ACS Appl. Mater. Interfaces, 12, 12949−12954 (2020); DOI: 10.1021/acsami.9b19697
  • Skalsky S, Zhang Y., Alanis J.A, et al. “Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing”. Light: Science & Applications 9, 43 (2020). DOI: 10.1038/s41377- 020-0279-y
  • .Haggar J, Cai Y, Ghataora S.S et al “High Modulation Bandwidth of Semi-polar (11-22) InGaN/GaN LEDs with Long Wavelength Emission”. ACS, 2020, DOI: acsaelm.0c00399
  • Coulon P-M, Feng P, Damilano B, et al. “Influence of MOVPE environment on the selective area thermal etching of GaN nanohole arrays”. Scientific Reports 10, 5642 (2020); DOI: s41598-020-62539-1
  • Salhi, J. Sexton, Abdulwahid O, et al. “InGaAs/AlAs/GaAs metamorphic asymmetric spacer layer tunnel (mASPAT) diodes for microwaves and millimeter-waves detection.” Journal of Applied Physics 127, 194505, 2020 DOI: 1063/5.0010369
  • Li K, Yang J, Tang M, et al, “Inversion Boundary Annihilation in GaAs Monolithically Grown on On-Axis Silicon (001)”. Advanced Optical Materials, 2000970 (2020) DOI: 10.1002/adom.202000970
  • Zhao X, Huang K, Bruckbauer J, et al. “Investigation of the influence of an InGaN superlattice prelayer on the performance of semi-polar (11-22) green LEDs grown on silicon (113) substrates”. Scientific Reports 10, 12650 (2020) DOI: s41598-020-69609-4
  • Bruckbauer J, Trager-Cowan C, Hourahine B, et al. “Luminescence behaviour of semi-polar (10-11) InGaN/GaN ‘bow-tie’ structures on patterned Si substrates”. Journal of Applied Physics. 127, 035705 (2020). DOI:10.1063/1.5129049
  • Watson J.M, Liang C.M, et al. “Magnetic field frequency optimisation for MFL imaging using QWHE sensors”. Insight, 62(7). 2020. DOI: 1784/insi.2020.62.7.396
  • Cai Y, Shen S, Zhu C, et al. “Non-polar (11-20) GaN metal-semiconductor-metal photo-detectors with superior performance on silicon”. ACS Appl. Mater. Interfaces 12, 25031–25036 (2020). DOI:10.1021/acsami.0c04890
  • Poyiatzis N, Bai J, Smith R. M, et al. “Optical polarization properties of (11-22) semi-polar InGaN LEDs with a wide spectral range”. Scientific Reports 10, 7191 (2020). DOI: 10.1038/s41598-020- 64196-w
  • Bai J, Cai Y, Fletcher P, et al. “Ultra-small, ultra-compact and ultra-high efficient InGaN micro light emitting diodes (μLEDs) with narrow spectra linewidth”. ACS Nano 14, 6906–6911, 2020. DOI: 10.1021/acsnano.0c01180
  • Li Z, Allford C.P, Shutts S, et al. “Monolithic InP Quantum Dot Mode-Locked Lasers Emitting at 730 nm”. IEEE Photonics Technology Letter 2(17), 1073-1076 DOI: 10.1109/LPT.2020.3012568
  • Biruu F.A, Reccagn Pi, Engelberg D, et al. “A Novel Method for Detecting the Onset and Location of Mechanical Failure by Correlating Engineering Stress With Changes in Magnetic Properties of UNS S32205 Duplex Stainless Steel Using Quantum Well Hall Effect Sensors”. EEE Transactions on Magnetics, vol. 56, no. 9, pp. 1-8, Sept. 2020, Art no. 6200508, DOI: 10.1109/TMAG.2020.3005390

2019

    • Salhi A, Alshaibani S, Alaskar Y et al. “Altering the Optical Properties of GaAsSb-Capped InAs Quantum Dots by Means of InAlAs Interlayers”. Nanoscale Research Letters, 14:41, 2019. DOI: 10.1186/s11671-019-2877-2.
    • Salhi A, Alshaibani S, Alaskar Y, et al. “Achieving wavelength emission beyond the C-band from Type-II InAs-GaAsSb quantum dots grown monolithically on silicon substrate”. Journal of Alloys and Compounds, 771, pp 382-386, 2019. DOI: 10.1016/j.jallcom.2018.08.276.
    • Zhang Y, Smith R.M, Jiu L et al. “Confocal photoluminescence investigation to identify basal stacking fault’s role in the optical properties of semi-polar InGaN/GaN lighting emitting diodes”. Sci Rep 9, 9735 (2019). DOI: 10.1038/s41598-019-46292-8
    • Naresh-Kumar G, Bruckbauer J, Winkelmann A, et al. “Determining GaN nanowire polarity and its influence on light emission in the scanning electron microscope”. Nano Lett. 19, 3863(2019). DOI: 10.1021/acs.nanolett.9b01054.
    • Li Q, Wang Z, Zhang Y, et al. “Indium tin oxide nanowires grown on Ni foam as voltage self-stabilizing supercapacitor electrode”. Journal of Materials Research. 2019:34(18), pp 3195-3203. DOI: 10.1557/jmr.2019.241
    • Tang M, Park J-S, Wang Z, et al. “Integration of III-V lasers on Si for Si photonics. Progress in Quantum Electronics”. 2019:66, pp 1-18. DOI 10.1016/j.pquantelec.2019.05.002
    • Li Q, Wang Z, Zhang Y, et al. “ITO nanowires grown on Ni foam as voltage self-stabilizing supercapacitor electrode.” Journal of Materials Research 34, 3195-3203 (2019). DOI: 10.1557/jmr.2019.241
    • Gong Y, Jiu L, Bruckbauer J, et al. “Monolithic multiple colour emission from InGaN grown on patterned non-polar GaN”. Scientific Reports, 9, 986. (2019). DOI: 10.1038/s41598-018-37575-7.
    • Poyatzis N, Athanasiou M, Nai J, et al. “Monolithically integrated white light LEDs on (11-22) semi-polar GaN templates”. Scientific Reports. 2019:9;986. DOI: 10.1038/s41598-018-37575-7
    • Yu P, Li Z, Wu T, et al. “Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission”. ACS Nano. 2019:12(11), pp 13492 – 13500. DOI: 10.1021/acsnano.9b07204
    • Li K, Liu Z, Tang M, et al. “O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate”. Crystal Growth 2019. DOI: 10.1016/J.CRYSGRO.2019.01.016
    • Bai J, Jiu L, Fletcher P, et al. “Optical and polarisation properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates”. Scientific Reports 9, 9770 (2019) DOI: 10.1038/s41598-019-46343-0
    • Liu Z, Hantschmann C, Tang M et al. “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon”. Journal of Lightwave Technology, June 2019, P 1-1. DOI: 10.1109/JLT.2019.2925598.
    • Cai Y, Yu X, Zhao X, Jiu L, et al. “Overgrowth and characterisation of (11-22) semipolar GaN on (113) silicon with a two-step method”. Semiconductor Science and Technology. 2019:34(4). DOI: 10.1088/1361-6641/AB08BF
    • Abdulwahid O. S, Kostakis I, Muttlak S.G et al. “Physical modelling of InGaAs–InAlAs APD and PIN photodetectors for> 25 Gb/s data rate applications”. IET Optoelectronics 13 (1), 40-45, 2019. DOI: 10.1049/iet-opt.2018.5030
    • Pan S, Cao V, Liao M, et al. “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate”. Journal of Semiconductors. 2019:40, 101302. DOI: 10.1088/1674-4926/40/10/101302
    • Scanning electron microscope as a flexible tool for investigating the properties of UV-emitting nitride semiconductor thin films. Trager-Cowan C, Alasmari, A, Avis W, et al. Phonics Research. 2019:7(11), pp B73 – B82. DOI: 10.1364/PRJ.7.000B73
    • Liao M, Li W, Tang M et al. “Selective area intermixing of III–V quantum-dot lasers grown on silicon with two wavelength lasing emissions”. Semiconductor Science and Technology, 34, 8, (2019). DOI: 10.1088/1361-6641/ab2c24.
    • Shen S, Zhao X, Yu X, et al. “Semi-polar InGaN-based green light-emitting diodes grown on silicon”. Physica Status Solidi A. 2019: DOI: 10.1002/pssa.201900654
    • Zhou T, Tang M, Xiang G, et al. “Ultra-low threshold InAs/GaAs quantum dot microdisklasers on planar on-axis Si (001) substrates.” Optica. 2019:6(4), pp 430-435. DOI: 10.1364/OPTICA.6.000430
    • Delmas M; Kwan D.C.M; Debnath M.C, et al. “Flexibility of Ga-containing Type-II superlattice for long-wavelength infrared detection”. Journal of Physics D: Applied Physics, 52, 47. DOI: 10.1088/1361- 6463/ab3b6a.

2018

    • Wang J, Hu H, Yin H, et al. “1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers”. Photonics Research. 2018:6 (4); pp 321-325. DOI: 10.1364/PRJ.6.000321
    • Li Q, Tian Z, Zhang Y, et al. “3D ITO-nanowire networks as transparent electrode for all-terrain substrate”. Scientific Reports 9, 4983 (2019). DOI: 1038/s41598-019-41579-2
    • Chandrasekar H, Uren M.J, Eblabla A, et al. “Buffer induced current-collapse in GaN HEMTs on Highly Resistive Si Substrates”. IEEE Electron Device Letters. 2018:39(10), pp 1556-1559. DOI: 10.1109/LED.2018.2864562
    • Brasser C, Bruckbauer J, Gong Y. P et al. “Cathodoluminescence studies of chevron features in semi-polar (112-2) InGaN/GaN multiple quantum well structures”. Journal of Applied Physics. 123, 174502 (2018). DOI: 10.1063/1.5021883.
    • Abadia N, Ghulam Saber M.D, Bello F et al. “CMOS-compatible multi-band plasmonic TE-pass polarizer”. Optics Express. 2018:26(23), pp 30292-30304. DOI: 10.1364/OE.26.030292.
    • Cai Y, Gong Y, Bai J, et al. “Controllable Uniform Green Light Emitters Enabled by Circular HEMT-LED Devices”. IEEE Photonics Journal. 2018:10(5). DOI: 10.1109/JPHOT.2018.2867821
    • Chen W, Deng Z, Guo D, et al. “Demonstration of InAs/InGaAs/GaAs Quantum Dots-in-a-Well Mid-Wave Infrared Photodetectors Grown on Silicon Substrate”. Journal of Lightwave Technology. 2018:36, 2572. DOI 10.1109/JLT.2018.2811388
    • Shutts S, Allford C.P, Spinnier C et al. “Degradation of III-V Quantum Dot Lasers Grown directly on Silicon substrates”. IEEE Journal of Selected Topics in Quantum Electronics, 25, 6. DOI: 10.1109/JSTQE.2019.2915994
    • Deng Z, Guo D, Burguete C.G, et al. “Demonstration of Si based InAs/GaSb type-II superlattice p-i-n photodetector”. Infrared Physics & Technology, 101, (2019), pp 133-137. DOI: 10.1016/j.infrared.2019.06.011.
    • Li W, Chen S, Tang M, et al. “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on Silicon.” Journal of Applied Physics, 2018:123(21); 215303. DOI: 10.1063/1.5011161
    • Gain switching of monolithic 1.3 um InAs/GaAs quantum dot lasers on silicon. Hantschmann C, Vasil’ev P.P, Chen S, et al. Journal of Lightwave Technology, 2018:36(18), pp 3837-2842. DOI: 10.1109/jlt.2018.2851918
    • Hantschmann C, Vasil’ev P.P, Chen S, et al. “Gain Switching of Monolithic 1.3 μm InAs/GaAs Quantum Dot Lasers on Silicon”. Journal of Lightwave Technology, vol. 36, no. 18, pp. 3837-3842, 2018. DOI: 10.1109/JLT.2018.2851918
    • Chen X.Y, Gu Y, Ma Y.J, et al. “Growth mechanisms for InAs/GaAs QDs with and without Bi surfactants”. Materials Research Express 6 (1), 015046 (2018). DOI: 10.1088/1555-6611/aae194.
    • Li Q, Zhang Y, Feng L, et al. “Heavily tin-doped indium oxide nano-pyramids as high-performance gas sensor”. AIP Advances 8, 115316 (2018). DOI: 10.1063/1.5048622.
    • Xu H, Han X, Dai X, et al. “High Detectivity and Transparent Few-Layer MoS2/Glassy-Graphene Heterostructure Photodetectors”. Advanced Mater. 2018:30(13), 1706561. DOI: 10.1002/adma.201706561
    • Liao M, Chen S, Park J, et al. “III–V quantum-dot lasers monolithically grown on silicon.” Semiconductor Science and Technology. 2018:33(12), 3002. DOI: 10.1364/OFC.2019.W4E.1.
    • Naresh-Kumar G, Thomson D, Zhang Y, et al. “Imaging basal plane stacking faults and dislocations in (11-22) GaN using electron channelling contrast imaging”. Journal of Applied Physics, 124, 065301 (2018). DOI: 10.1063/1.5042515.
    • Shutts S, Spinnler C, Li Z, et al. “Increasing maximum gain in InAs quantum dot lasers on GaAs and Si”. IEEE Photonics Conference (IPC), Reston, VA, USA, 2018, pp. 1-2. DOI: 10.1109/IPCon.2018.8527302
    • Li Q, Zhang Y, Feng L, et al. “Investigation of growth parameters influence on self-catalyzed ITO nanowires by high RF-power sputtering.” Nanotechnology. 2018:29(16). DOI: 10.1088/1361-6528/aaafa7
    • Zainul Ariffin K.N, Wang Y, Abdullah M.R.R, et al. “Investigations of Asymmetric Spacer Tunnel Layer Diodes for High-Frequency Applications”. IEEE Transactions on Electron Devices 2018:65(1), pp 64- 71. DOI: 10.1109/TED.2017.2777803
    • Muttlak S.G, Abdulwahid O. S, Sexton J et al. “InGaAs/AlAs Resonant Tunneling Diodes for THz Applications: An Experimental Investigation”. IEEE Journal of the Electron Devices Society, 6, pp 254-262, 2018. DOI: 10.1109/JEDS.2018.2797951
    • Muttlak S G, Kostakis I, Abdulwahid O S ,et al. ‘Low-cost InP–InGaAs PIN–HBT-based OEIC for up to 20 Gb/s optical communication systems”. ET Optoelectronics, 13, 3, pp 144 – 150. DOI: 10.1049/iet-opt.2018.5032.
    • Liao M, Chen S, Liu Z, et al. “Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon”. Photonics Research 6, 1062-1066 (2018). DOI: 10.1364/PRJ.6.001062
    • Delmas M, Debnath M.C, Liang B, et al. “Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors”. Infrared Physics & Technology. 2018:94, pp 286-290. DOI: 10.1016/j.infrared.2018.09.012
    • Wang Y, Chen S, Yu Y, et al. “Monolithic quantum-dot distributed feedback laser array on silicon”. Optica 2018:5(5), pp 528-533. DOI: 10.1364/OPTICA.5.000528
    • Bai J, Jiu L, Gong Y, et al. “Non-polar (11-20) GaN grown on sapphire with double overgrowth on micro-rod/stripe templates”. Semiconductor Science and Technology. 2018: 33; 12. DOI:10.1088/1361-6641/AAED93
    • Wang Y, Bai Y, Liu, H et al. “Optimization of 1.3 μm InAs/GaAs quantum dot lasers epitaxially grown on silicon: taking the optical loss of metamorphic epilayers into account”. Semiconductor Science and Technology. 33, 123002 (2018). DOI: 10.1088/1555-6611/aae194.
    • Jiu L, Gong Y, Wang T. “Overgrowth and strain investigation of (11-20) non-polar GaN on patterned templates on sapphire.” Scientific Reports 8, 9898 (2018). DOI: 10.1038/s41598-018-28328-7.
    • Abdulwahid OS, Sexton J, Kostakis I, et al. “Physical modelling and experimental characterisation of InAlAs/InGaAs avalanche photodiode for 10 Gb/s data rates and higher”. IET Optoelectronics. 2018:12(1), pp 5-10. DOI: 10.1049/iet-opt.2017.0068
    • Wang Y, Xu L, Yun H, et al. “Polarization-Independent Mode-Evolution-Based Coupler for the Silicon-on-Insulator Platform”. Photonics Journal (2018). DOI: 10.1109/JPHOT.2018.2835767
    • Hantschmann C, Vasil’ev P.P, Chen S, et al. “Gain Switching of Monolithic 1.3 μm InAs/GaAs Quantum Dot Lasers on Silicon”. Journal of Lightwave Technology, vol. 36, no. 18, pp. 3837-3842, 2018. DOI: 10.1109/JLT.2018.2851918

2017

  • Ghataora S, Smith R.M, Athanasiou M, Wang T. “Electrically Injected Hybrid Organic/Inorganic III-Nitride White Light-Emitting Diodes with Nonradiative Förster Resonance Energy Transfer”. ACS Photonics. 2017:5(2), pp 642-647. DOI: 10.1021/acsphotonics.7b01291
  • Chen S, Liao M, Tang M, et al. “Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates”. Optics Express, 2017:25(5), pp 4632- 4639. DOI: 10.1364/OE.25.004632
  • Kryzhanovskaya N.V, Moiseev E.I, Polubavkina Y.S, et al. “Elevated temperature lasing from injection microdisk lasers on silicon.” Laser Physics Letters 2017:15(1), pp 015802. DOI: 10.1088/1612- 202X/aa9306
  • Kryzhanovskaya N, Moiseev E, Polubavkina Y, et al. “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3 μm”. Optics Letters, 2017:42(17), pp 3319-3322. DOI :10.1364/OL.42.003319
  • Liao M, Chen S, Tang M, et al “Integrating III-V quantum dot lasers on silicon substrates for silicon photonics”. Silicon Photonics XII, 2017, 10108; DOI: 10.1117/12.2249761
  • Athanasiou M, Smith R, Pugh J, et al. “Monolithically integrated multi-colour lasing from microdisk cavity from an InGaN / GaN MQWs On Si Substrate”. Scientific Reports 7, 10086; (2017) DOI:10.1038/s41598-017-10712-4
  • Li Z, Wang L, Bruckbauer J, et al. “Optical Properties of Semi-polar (11-22) AlxGa1-xN with High Al Composition”. Applied Physics Letters. 2017:10(9) 110, 082103. DOI: 10.1063/1.4977428
  • Thomas R, Harrison A, Barrow D, et al. “Photonic integration platform with pump free microfluidics”. Optics express, 2017:25(20), pp 23634-23644. DOI: 10.1364/OE.25.023634
  • Athanasiou M, Smith R. M, Ghataora S, et al. “Polarized white light from hybrid organic/III-nitrides grating structures”. Scientific Reports 7, 39677. (2017) DOI: 10.1038/srep39677
  • Hou Y, Ahmed Syed Z, Jiu L, et al. “Porosity-enhanced solar powered hydrogen generation in GaN photoelectrodes”. Appl. Phys. Lett. 111, 203901 (2017) DOI: 10.1063/1.5001938
  • Zi Z, Jiu L, Wang L, et al. “Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: simultaneous management of crystal quality improvement and cracking issue”. Applied Physics Letter. 2017:110(8), 082103 (2017). DOI: 10.1063/1.4977094
  • Liang C-W, Balaban E, Ahmad E, Zhang Z, et al. “A real time high sensitivity high spatial resolution quantum well hall effect magnetovision camera. Sensors and Actuators A”: Physical. 2017:265, pp 127- 137. DOI: 10.1016/J.SNA.2017.08.035